MakeItFrom.com
Menu (ESC)

EN 1.5636 Steel vs. S35045 Stainless Steel

Both EN 1.5636 steel and S35045 stainless steel are iron alloys. They have a modest 40% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.5636 steel and the bottom bar is S35045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 27
39
Fatigue Strength, MPa 230
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Tensile Strength: Ultimate (UTS), MPa 560
540
Tensile Strength: Yield (Proof), MPa 310
190

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 410
1100
Melting Completion (Liquidus), °C 1460
1390
Melting Onset (Solidus), °C 1420
1340
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 52
12
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 3.6
34
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.7
5.8
Embodied Energy, MJ/kg 23
83
Embodied Water, L/kg 52
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
170
Resilience: Unit (Modulus of Resilience), kJ/m3 260
94
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
19
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 14
3.2
Thermal Shock Resistance, points 16
12

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0.060 to 0.12
0.060 to 0.1
Chromium (Cr), % 0 to 0.3
25 to 29
Copper (Cu), % 0 to 0.3
0 to 0.75
Iron (Fe), % 94.6 to 97.4
29.4 to 42.6
Manganese (Mn), % 0.5 to 0.8
0 to 1.5
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 2.0 to 3.0
32 to 37
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6
Vanadium (V), % 0 to 0.050
0