MakeItFrom.com
Menu (ESC)

EN 1.5636 Steel vs. S45503 Stainless Steel

Both EN 1.5636 steel and S45503 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is EN 1.5636 steel and the bottom bar is S45503 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
410 to 500
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
4.6 to 6.8
Fatigue Strength, MPa 230
710 to 800
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Tensile Strength: Ultimate (UTS), MPa 560
1610 to 1850
Tensile Strength: Yield (Proof), MPa 310
1430 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 410
760
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 13
11

Otherwise Unclassified Properties

Base Metal Price, % relative 3.6
15
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.7
3.4
Embodied Energy, MJ/kg 23
48
Embodied Water, L/kg 52
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
82 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
57 to 65
Strength to Weight: Bending, points 19
39 to 43
Thermal Shock Resistance, points 16
56 to 64

Alloy Composition

Carbon (C), % 0.060 to 0.12
0 to 0.010
Chromium (Cr), % 0 to 0.3
11 to 12.5
Copper (Cu), % 0 to 0.3
1.5 to 2.5
Iron (Fe), % 94.6 to 97.4
72.4 to 78.9
Manganese (Mn), % 0.5 to 0.8
0 to 0.5
Molybdenum (Mo), % 0 to 0.2
0 to 0.5
Nickel (Ni), % 2.0 to 3.0
7.5 to 9.5
Niobium (Nb), % 0
0.1 to 0.5
Phosphorus (P), % 0 to 0.020
0 to 0.010
Silicon (Si), % 0 to 0.6
0 to 0.2
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
1.0 to 1.4
Vanadium (V), % 0 to 0.050
0