MakeItFrom.com
Menu (ESC)

EN 1.5637 Steel vs. C12900 Copper

EN 1.5637 steel belongs to the iron alloys classification, while C12900 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.5637 steel and the bottom bar is C12900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 24
2.8 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Shear Strength, MPa 360
150 to 210
Tensile Strength: Ultimate (UTS), MPa 560
220 to 420
Tensile Strength: Yield (Proof), MPa 390
75 to 380

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 410
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 52
380
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
98
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
98

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
32
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 1.8
2.6
Embodied Energy, MJ/kg 24
41
Embodied Water, L/kg 52
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
11 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 410
24 to 640
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
6.8 to 13
Strength to Weight: Bending, points 19
9.1 to 14
Thermal Diffusivity, mm2/s 14
110
Thermal Shock Resistance, points 16
7.8 to 15

Alloy Composition

Antimony (Sb), % 0
0 to 0.0030
Arsenic (As), % 0
0 to 0.012
Bismuth (Bi), % 0
0 to 0.0030
Carbon (C), % 0 to 0.15
0
Copper (Cu), % 0
99.88 to 100
Iron (Fe), % 94.9 to 96.5
0
Lead (Pb), % 0
0 to 0.0040
Manganese (Mn), % 0.3 to 0.8
0
Nickel (Ni), % 3.3 to 3.8
0 to 0.050
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.35
0
Silver (Ag), % 0
0 to 0.054
Sulfur (S), % 0 to 0.0050
0
Tellurium (Te), % 0
0 to 0.025
Vanadium (V), % 0 to 0.050
0