MakeItFrom.com
Menu (ESC)

EN 1.5662 Steel vs. 6261 Aluminum

EN 1.5662 steel belongs to the iron alloys classification, while 6261 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.5662 steel and the bottom bar is 6261 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 20
9.0 to 16
Fatigue Strength, MPa 380 to 450
60 to 120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 460 to 470
90 to 180
Tensile Strength: Ultimate (UTS), MPa 740 to 750
150 to 300
Tensile Strength: Yield (Proof), MPa 550 to 660
100 to 260

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 430
160
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
48
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
160

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 2.3
8.3
Embodied Energy, MJ/kg 31
150
Embodied Water, L/kg 63
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
21 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 810 to 1150
77 to 500
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 26
15 to 31
Strength to Weight: Bending, points 23
23 to 37
Thermal Shock Resistance, points 22
6.5 to 13

Alloy Composition

Aluminum (Al), % 0
96.6 to 98.6
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 88.6 to 91.2
0 to 0.4
Magnesium (Mg), % 0
0.7 to 1.0
Manganese (Mn), % 0.3 to 0.8
0.2 to 0.35
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 8.5 to 10
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.35
0.4 to 0.7
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15