MakeItFrom.com
Menu (ESC)

EN 1.5662 Steel vs. ASTM A369 Grade FP91

Both EN 1.5662 steel and ASTM A369 grade FP91 are iron alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.5662 steel and the bottom bar is ASTM A369 grade FP91.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 230
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
19
Fatigue Strength, MPa 380 to 450
320
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Shear Strength, MPa 460 to 470
410
Tensile Strength: Ultimate (UTS), MPa 740 to 750
670
Tensile Strength: Yield (Proof), MPa 550 to 660
460

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 430
600
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
10

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
7.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.3
2.6
Embodied Energy, MJ/kg 31
37
Embodied Water, L/kg 63
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 810 to 1150
560
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 23
22
Thermal Shock Resistance, points 22
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0 to 0.1
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Iron (Fe), % 88.6 to 91.2
87.3 to 90.3
Manganese (Mn), % 0.3 to 0.8
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.1
0.85 to 1.1
Nickel (Ni), % 8.5 to 10
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.35
0.2 to 0.5
Sulfur (S), % 0 to 0.0050
0 to 0.025
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0 to 0.050
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010