MakeItFrom.com
Menu (ESC)

EN 1.5662 Steel vs. Nickel 600

EN 1.5662 steel belongs to the iron alloys classification, while nickel 600 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.5662 steel and the bottom bar is nickel 600.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
3.4 to 35
Fatigue Strength, MPa 380 to 450
220 to 300
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
75
Shear Strength, MPa 460 to 470
430 to 570
Tensile Strength: Ultimate (UTS), MPa 740 to 750
650 to 990
Tensile Strength: Yield (Proof), MPa 550 to 660
270 to 760

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 430
1100
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1410
1350
Specific Heat Capacity, J/kg-K 470
460
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
55
Density, g/cm3 8.0
8.5
Embodied Carbon, kg CO2/kg material 2.3
9.0
Embodied Energy, MJ/kg 31
130
Embodied Water, L/kg 63
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
31 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 810 to 1150
190 to 1490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 26
21 to 32
Strength to Weight: Bending, points 23
20 to 26
Thermal Shock Resistance, points 22
19 to 29

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.15
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 88.6 to 91.2
6.0 to 10
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 8.5 to 10
72 to 80
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.0050
0 to 0.015
Vanadium (V), % 0 to 0.050
0