MakeItFrom.com
Menu (ESC)

EN 1.5662 Steel vs. C15100 Copper

EN 1.5662 steel belongs to the iron alloys classification, while C15100 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.5662 steel and the bottom bar is C15100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
2.0 to 36
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Shear Strength, MPa 460 to 470
170 to 270
Tensile Strength: Ultimate (UTS), MPa 740 to 750
260 to 470
Tensile Strength: Yield (Proof), MPa 550 to 660
69 to 460

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 430
200
Melting Completion (Liquidus), °C 1460
1100
Melting Onset (Solidus), °C 1410
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
95
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
95

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
31
Density, g/cm3 8.0
9.0
Embodied Carbon, kg CO2/kg material 2.3
2.7
Embodied Energy, MJ/kg 31
43
Embodied Water, L/kg 63
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
9.3 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 810 to 1150
21 to 890
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 26
8.1 to 15
Strength to Weight: Bending, points 23
10 to 15
Thermal Shock Resistance, points 22
9.3 to 17

Alloy Composition

Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
99.8 to 99.95
Iron (Fe), % 88.6 to 91.2
0
Manganese (Mn), % 0.3 to 0.8
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 8.5 to 10
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.0050
0
Vanadium (V), % 0 to 0.050
0
Zirconium (Zr), % 0
0.050 to 0.15
Residuals, % 0
0 to 0.1