MakeItFrom.com
Menu (ESC)

EN 1.5662 Steel vs. C82800 Copper

EN 1.5662 steel belongs to the iron alloys classification, while C82800 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.5662 steel and the bottom bar is C82800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
1.0 to 20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
46
Tensile Strength: Ultimate (UTS), MPa 740 to 750
670 to 1140
Tensile Strength: Yield (Proof), MPa 550 to 660
380 to 1000

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Maximum Temperature: Mechanical, °C 430
310
Melting Completion (Liquidus), °C 1460
930
Melting Onset (Solidus), °C 1410
890
Specific Heat Capacity, J/kg-K 470
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
18
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
19

Otherwise Unclassified Properties

Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 2.3
12
Embodied Energy, MJ/kg 31
190
Embodied Water, L/kg 63
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 810 to 1150
590 to 4080
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 26
21 to 36
Strength to Weight: Bending, points 23
20 to 28
Thermal Shock Resistance, points 22
23 to 39

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.5 to 2.9
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 0
94.6 to 97.2
Iron (Fe), % 88.6 to 91.2
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.3 to 0.8
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 8.5 to 10
0 to 0.2
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.35
0.2 to 0.35
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5