MakeItFrom.com
Menu (ESC)

EN 1.5662 Steel vs. C95800 Bronze

EN 1.5662 steel belongs to the iron alloys classification, while C95800 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.5662 steel and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Tensile Strength: Ultimate (UTS), MPa 740 to 750
660
Tensile Strength: Yield (Proof), MPa 550 to 660
270

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 430
230
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
29
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 2.3
3.4
Embodied Energy, MJ/kg 31
55
Embodied Water, L/kg 63
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 810 to 1150
310
Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 26
22
Strength to Weight: Bending, points 23
20
Thermal Shock Resistance, points 22
23

Alloy Composition

Aluminum (Al), % 0
8.5 to 9.5
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
79 to 83.2
Iron (Fe), % 88.6 to 91.2
3.5 to 4.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.3 to 0.8
0.8 to 1.5
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 8.5 to 10
4.0 to 5.0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.35
0 to 0.1
Sulfur (S), % 0 to 0.0050
0
Vanadium (V), % 0 to 0.050
0
Residuals, % 0
0 to 0.5