MakeItFrom.com
Menu (ESC)

EN 1.5663 Steel vs. CC331G Bronze

EN 1.5663 steel belongs to the iron alloys classification, while CC331G bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.5663 steel and the bottom bar is CC331G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
140
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
20
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 750
620
Tensile Strength: Yield (Proof), MPa 660
240

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 430
220
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1410
1000
Specific Heat Capacity, J/kg-K 470
440
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
13
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
14

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
28
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 2.3
3.2
Embodied Energy, MJ/kg 31
53
Embodied Water, L/kg 63
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
97
Resilience: Unit (Modulus of Resilience), kJ/m3 1150
250
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 26
21
Strength to Weight: Bending, points 23
19
Thermal Shock Resistance, points 22
22

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
83 to 86.5
Iron (Fe), % 88.6 to 91.2
1.5 to 3.5
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 8.5 to 10
0 to 1.5
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.35
0 to 0.2
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.2
Vanadium (V), % 0 to 0.010
0
Zinc (Zn), % 0
0 to 0.5