MakeItFrom.com
Menu (ESC)

EN 1.5663 Steel vs. Monel R-405

EN 1.5663 steel belongs to the iron alloys classification, while Monel R-405 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.5663 steel and the bottom bar is Monel R-405.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
160
Elongation at Break, % 20
9.1 to 39
Fatigue Strength, MPa 450
210 to 250
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
62
Shear Strength, MPa 470
350 to 370
Tensile Strength: Ultimate (UTS), MPa 750
540 to 630
Tensile Strength: Yield (Proof), MPa 660
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 430
900
Melting Completion (Liquidus), °C 1460
1350
Melting Onset (Solidus), °C 1410
1300
Specific Heat Capacity, J/kg-K 470
430
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
50
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 2.3
7.9
Embodied Energy, MJ/kg 31
110
Embodied Water, L/kg 63
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
49 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 1150
120 to 370
Stiffness to Weight: Axial, points 13
10
Stiffness to Weight: Bending, points 24
21
Strength to Weight: Axial, points 26
17 to 20
Strength to Weight: Bending, points 23
17 to 18
Thermal Shock Resistance, points 22
17 to 20

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.3
Copper (Cu), % 0
28 to 34
Iron (Fe), % 88.6 to 91.2
0 to 2.5
Manganese (Mn), % 0.3 to 0.8
0 to 2.0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 8.5 to 10
63 to 72
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.0050
0.025 to 0.060
Vanadium (V), % 0 to 0.010
0