MakeItFrom.com
Menu (ESC)

EN 1.5663 Steel vs. C14200 Copper

EN 1.5663 steel belongs to the iron alloys classification, while C14200 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.5663 steel and the bottom bar is C14200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
8.0 to 45
Fatigue Strength, MPa 450
76 to 130
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Shear Strength, MPa 470
150 to 200
Tensile Strength: Ultimate (UTS), MPa 750
220 to 370
Tensile Strength: Yield (Proof), MPa 660
75 to 340

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 430
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1410
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
45
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
45

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
31
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 2.3
2.6
Embodied Energy, MJ/kg 31
41
Embodied Water, L/kg 63
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
29 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 1150
24 to 500
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 26
6.8 to 11
Strength to Weight: Bending, points 23
9.1 to 13
Thermal Shock Resistance, points 22
7.9 to 13

Alloy Composition

Arsenic (As), % 0
0.15 to 0.5
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
99.4 to 99.835
Iron (Fe), % 88.6 to 91.2
0
Manganese (Mn), % 0.3 to 0.8
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 8.5 to 10
0
Phosphorus (P), % 0 to 0.015
0.015 to 0.040
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.0050
0
Vanadium (V), % 0 to 0.010
0