MakeItFrom.com
Menu (ESC)

EN 1.5663 Steel vs. C60800 Bronze

EN 1.5663 steel belongs to the iron alloys classification, while C60800 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.5663 steel and the bottom bar is C60800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
55
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
46
Shear Strength, MPa 470
290
Tensile Strength: Ultimate (UTS), MPa 750
390
Tensile Strength: Yield (Proof), MPa 660
150

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 430
210
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1410
1050
Specific Heat Capacity, J/kg-K 470
410
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
17
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
18

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
29
Density, g/cm3 8.0
8.6
Embodied Carbon, kg CO2/kg material 2.3
2.9
Embodied Energy, MJ/kg 31
48
Embodied Water, L/kg 63
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1150
94
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 26
13
Strength to Weight: Bending, points 23
14
Thermal Shock Resistance, points 22
14

Alloy Composition

Aluminum (Al), % 0
5.0 to 6.5
Arsenic (As), % 0
0.020 to 0.35
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
92.5 to 95
Iron (Fe), % 88.6 to 91.2
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0.3 to 0.8
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 8.5 to 10
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.0050
0
Vanadium (V), % 0 to 0.010
0
Residuals, % 0
0 to 0.5