MakeItFrom.com
Menu (ESC)

EN 1.5663 Steel vs. C86500 Bronze

EN 1.5663 steel belongs to the iron alloys classification, while C86500 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.5663 steel and the bottom bar is C86500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
25
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 750
530
Tensile Strength: Yield (Proof), MPa 660
190

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 430
120
Melting Completion (Liquidus), °C 1460
880
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 470
390
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
22
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
25

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
23
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.3
2.8
Embodied Energy, MJ/kg 31
48
Embodied Water, L/kg 63
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1150
180
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 26
19
Strength to Weight: Bending, points 23
18
Thermal Shock Resistance, points 22
17

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.5
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 88.6 to 91.2
0.4 to 2.0
Lead (Pb), % 0
0 to 0.4
Manganese (Mn), % 0.3 to 0.8
0.1 to 1.5
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 8.5 to 10
0 to 1.0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 1.0
Vanadium (V), % 0 to 0.010
0
Zinc (Zn), % 0
36 to 42
Residuals, % 0
0 to 1.0