MakeItFrom.com
Menu (ESC)

EN 1.5663 Steel vs. C95300 Bronze

EN 1.5663 steel belongs to the iron alloys classification, while C95300 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.5663 steel and the bottom bar is C95300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
120 to 170
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
14 to 25
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 750
520 to 610
Tensile Strength: Yield (Proof), MPa 660
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 430
220
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
13
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
14

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
28
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 2.3
3.1
Embodied Energy, MJ/kg 31
52
Embodied Water, L/kg 63
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 1150
170 to 420
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 26
17 to 21
Strength to Weight: Bending, points 23
17 to 19
Thermal Shock Resistance, points 22
19 to 22

Alloy Composition

Aluminum (Al), % 0
9.0 to 11
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
86.5 to 90.2
Iron (Fe), % 88.6 to 91.2
0.8 to 1.5
Manganese (Mn), % 0.3 to 0.8
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 8.5 to 10
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.0050
0
Vanadium (V), % 0 to 0.010
0
Residuals, % 0
0 to 1.0