MakeItFrom.com
Menu (ESC)

EN 1.5663 Steel vs. N08020 Stainless Steel

Both EN 1.5663 steel and N08020 stainless steel are iron alloys. They have 47% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.5663 steel and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
15 to 34
Fatigue Strength, MPa 450
210 to 240
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 470
380 to 410
Tensile Strength: Ultimate (UTS), MPa 750
610 to 620
Tensile Strength: Yield (Proof), MPa 660
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 430
1100
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1410
1360
Specific Heat Capacity, J/kg-K 470
460
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
38
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 2.3
6.6
Embodied Energy, MJ/kg 31
92
Embodied Water, L/kg 63
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 1150
180 to 440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26
21
Strength to Weight: Bending, points 23
20
Thermal Shock Resistance, points 22
15

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 88.6 to 91.2
29.9 to 44
Manganese (Mn), % 0.3 to 0.8
0 to 2.0
Molybdenum (Mo), % 0 to 0.1
2.0 to 3.0
Nickel (Ni), % 8.5 to 10
32 to 38
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.015
0 to 0.045
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.035
Vanadium (V), % 0 to 0.010
0