MakeItFrom.com
Menu (ESC)

EN 1.5680 Steel vs. 4004 Aluminum

EN 1.5680 steel belongs to the iron alloys classification, while 4004 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.5680 steel and the bottom bar is 4004 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 23
2.4
Fatigue Strength, MPa 310
42
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Shear Strength, MPa 390
63
Tensile Strength: Ultimate (UTS), MPa 620
110
Tensile Strength: Yield (Proof), MPa 440
60

Thermal Properties

Latent Heat of Fusion, J/g 250
540
Maximum Temperature: Mechanical, °C 420
160
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1420
560
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 48
130
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
33
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
120

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 1.9
8.0
Embodied Energy, MJ/kg 26
150
Embodied Water, L/kg 55
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 510
25
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 22
12
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 13
58
Thermal Shock Resistance, points 18
5.1

Alloy Composition

Aluminum (Al), % 0
86 to 90
Carbon (C), % 0 to 0.15
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 93.4 to 95
0 to 0.8
Magnesium (Mg), % 0
1.0 to 2.0
Manganese (Mn), % 0.3 to 0.8
0 to 0.1
Nickel (Ni), % 4.8 to 5.3
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.35
9.0 to 10.5
Sulfur (S), % 0 to 0.0050
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15