MakeItFrom.com
Menu (ESC)

EN 1.5680 Steel vs. C46200 Brass

EN 1.5680 steel belongs to the iron alloys classification, while C46200 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.5680 steel and the bottom bar is C46200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 23
17 to 34
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Shear Strength, MPa 390
240 to 290
Tensile Strength: Ultimate (UTS), MPa 620
370 to 480
Tensile Strength: Yield (Proof), MPa 440
120 to 290

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 420
120
Melting Completion (Liquidus), °C 1460
840
Melting Onset (Solidus), °C 1420
800
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 48
110
Thermal Expansion, µm/m-K 13
20

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
24
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 1.9
2.7
Embodied Energy, MJ/kg 26
46
Embodied Water, L/kg 55
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
69 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 510
72 to 400
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
13 to 16
Strength to Weight: Bending, points 20
14 to 17
Thermal Diffusivity, mm2/s 13
35
Thermal Shock Resistance, points 18
12 to 16

Alloy Composition

Carbon (C), % 0 to 0.15
0
Copper (Cu), % 0
62 to 65
Iron (Fe), % 93.4 to 95
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.3 to 0.8
0
Nickel (Ni), % 4.8 to 5.3
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0.5 to 1.0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
33.3 to 37.5
Residuals, % 0
0 to 0.4