MakeItFrom.com
Menu (ESC)

EN 1.5680 Steel vs. S20433 Stainless Steel

Both EN 1.5680 steel and S20433 stainless steel are iron alloys. They have 74% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.5680 steel and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
46
Fatigue Strength, MPa 310
250
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 390
440
Tensile Strength: Ultimate (UTS), MPa 620
630
Tensile Strength: Yield (Proof), MPa 440
270

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 420
900
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 48
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
13
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.9
2.7
Embodied Energy, MJ/kg 26
39
Embodied Water, L/kg 55
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
230
Resilience: Unit (Modulus of Resilience), kJ/m3 510
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
23
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 13
4.0
Thermal Shock Resistance, points 18
14

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 0
1.5 to 3.5
Iron (Fe), % 93.4 to 95
64.1 to 72.4
Manganese (Mn), % 0.3 to 0.8
5.5 to 7.5
Nickel (Ni), % 4.8 to 5.3
3.5 to 5.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.030
Vanadium (V), % 0 to 0.050
0