MakeItFrom.com
Menu (ESC)

EN 1.5680 Steel vs. S35125 Stainless Steel

Both EN 1.5680 steel and S35125 stainless steel are iron alloys. They have 47% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.5680 steel and the bottom bar is S35125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
39
Fatigue Strength, MPa 310
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Shear Strength, MPa 390
370
Tensile Strength: Ultimate (UTS), MPa 620
540
Tensile Strength: Yield (Proof), MPa 440
230

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 420
1100
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 48
12
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
36
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 1.9
6.4
Embodied Energy, MJ/kg 26
89
Embodied Water, L/kg 55
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
170
Resilience: Unit (Modulus of Resilience), kJ/m3 510
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 13
3.1
Thermal Shock Resistance, points 18
12

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.1
Chromium (Cr), % 0
20 to 23
Iron (Fe), % 93.4 to 95
36.2 to 45.8
Manganese (Mn), % 0.3 to 0.8
1.0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 4.8 to 5.3
31 to 35
Niobium (Nb), % 0
0.25 to 0.6
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.0050
0 to 0.015
Vanadium (V), % 0 to 0.050
0