MakeItFrom.com
Menu (ESC)

EN 1.5682 Steel vs. C17465 Copper

EN 1.5682 steel belongs to the iron alloys classification, while C17465 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.5682 steel and the bottom bar is C17465 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 21
5.3 to 36
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
44
Shear Strength, MPa 480
210 to 540
Tensile Strength: Ultimate (UTS), MPa 770
310 to 930
Tensile Strength: Yield (Proof), MPa 570
120 to 830

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 430
210
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1410
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
22 to 51
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
23 to 52

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
45
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 2.3
4.1
Embodied Energy, MJ/kg 31
64
Embodied Water, L/kg 63
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
47 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 870
64 to 2920
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 27
9.7 to 29
Strength to Weight: Bending, points 23
11 to 24
Thermal Shock Resistance, points 23
11 to 33

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.15 to 0.5
Carbon (C), % 0 to 0.13
0
Copper (Cu), % 0 to 0.3
95.7 to 98.7
Iron (Fe), % 88.7 to 91.1
0 to 0.2
Lead (Pb), % 0
0.2 to 0.6
Manganese (Mn), % 0.3 to 0.8
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 8.5 to 9.5
1.0 to 1.4
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.15 to 0.35
0 to 0.2
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.25
Vanadium (V), % 0 to 0.050
0
Zirconium (Zr), % 0
0 to 0.5
Residuals, % 0
0 to 0.5