MakeItFrom.com
Menu (ESC)

EN 1.6220 Steel vs. AWS E430

Both EN 1.6220 steel and AWS E430 are iron alloys. They have 83% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.6220 steel and the bottom bar is AWS E430.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23 to 25
23
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 550 to 580
500

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 52
25
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
9.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.5
2.2
Embodied Energy, MJ/kg 19
31
Embodied Water, L/kg 48
120

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19 to 20
18
Strength to Weight: Bending, points 19 to 20
18
Thermal Diffusivity, mm2/s 14
6.7
Thermal Shock Resistance, points 16 to 17
13

Alloy Composition

Carbon (C), % 0.17 to 0.23
0 to 0.1
Chromium (Cr), % 0
15 to 18
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 96.7 to 98.8
77.8 to 85
Manganese (Mn), % 1.0 to 1.6
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.8
0 to 0.6
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 0.9
Sulfur (S), % 0 to 0.030
0 to 0.030