MakeItFrom.com
Menu (ESC)

EN 1.6220 Steel vs. C87700 Bronze

EN 1.6220 steel belongs to the iron alloys classification, while C87700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.6220 steel and the bottom bar is C87700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 23 to 25
3.6
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 550 to 580
300
Tensile Strength: Yield (Proof), MPa 340
120

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1460
980
Melting Onset (Solidus), °C 1420
900
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 52
120
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
45
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
48

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.5
2.7
Embodied Energy, MJ/kg 19
45
Embodied Water, L/kg 48
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 310
64
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 19 to 20
9.8
Strength to Weight: Bending, points 19 to 20
12
Thermal Diffusivity, mm2/s 14
34
Thermal Shock Resistance, points 16 to 17
11

Alloy Composition

Antimony (Sb), % 0
0 to 0.1
Carbon (C), % 0.17 to 0.23
0
Copper (Cu), % 0
87.5 to 90.5
Iron (Fe), % 96.7 to 98.8
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 1.0 to 1.6
0 to 0.8
Nickel (Ni), % 0 to 0.8
0 to 0.25
Phosphorus (P), % 0 to 0.020
0 to 0.15
Silicon (Si), % 0 to 0.6
2.5 to 3.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 2.0
Zinc (Zn), % 0
7.0 to 9.0
Residuals, % 0
0 to 0.8