MakeItFrom.com
Menu (ESC)

EN 1.6228 Steel vs. S31100 Stainless Steel

Both EN 1.6228 steel and S31100 stainless steel are iron alloys. They have 69% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.6228 steel and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
270
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
4.5
Fatigue Strength, MPa 280
330
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
79
Shear Strength, MPa 360
580
Tensile Strength: Ultimate (UTS), MPa 570
1000
Tensile Strength: Yield (Proof), MPa 390
710

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
16
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
16
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.6
3.1
Embodied Energy, MJ/kg 21
44
Embodied Water, L/kg 50
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
40
Resilience: Unit (Modulus of Resilience), kJ/m3 400
1240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
36
Strength to Weight: Bending, points 19
29
Thermal Diffusivity, mm2/s 14
4.2
Thermal Shock Resistance, points 17
28

Alloy Composition

Carbon (C), % 0 to 0.18
0 to 0.060
Chromium (Cr), % 0
25 to 27
Iron (Fe), % 96.2 to 97.9
63.6 to 69
Manganese (Mn), % 0.8 to 1.5
0 to 1.0
Nickel (Ni), % 1.3 to 1.7
6.0 to 7.0
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0
0 to 0.25
Vanadium (V), % 0 to 0.050
0