MakeItFrom.com
Menu (ESC)

EN 1.6368 Steel vs. AISI 418 Stainless Steel

Both EN 1.6368 steel and AISI 418 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.6368 steel and the bottom bar is AISI 418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
330
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18
17
Fatigue Strength, MPa 310 to 330
520
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 410 to 430
680
Tensile Strength: Ultimate (UTS), MPa 660 to 690
1100
Tensile Strength: Yield (Proof), MPa 460 to 490
850

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 410
770
Melting Completion (Liquidus), °C 1460
1500
Melting Onset (Solidus), °C 1420
1460
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
15
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.7
2.9
Embodied Energy, MJ/kg 22
41
Embodied Water, L/kg 53
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
170
Resilience: Unit (Modulus of Resilience), kJ/m3 580 to 650
1830
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23 to 24
38
Strength to Weight: Bending, points 21 to 22
29
Thermal Diffusivity, mm2/s 11
6.7
Thermal Shock Resistance, points 20
40

Alloy Composition

Aluminum (Al), % 0.015 to 0.040
0
Carbon (C), % 0 to 0.17
0.15 to 0.2
Chromium (Cr), % 0 to 0.3
12 to 14
Copper (Cu), % 0.5 to 0.8
0
Iron (Fe), % 95.1 to 97.2
78.5 to 83.6
Manganese (Mn), % 0.8 to 1.2
0 to 0.5
Molybdenum (Mo), % 0.25 to 0.5
0 to 0.5
Nickel (Ni), % 1.0 to 1.3
1.8 to 2.2
Niobium (Nb), % 0.015 to 0.045
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.25 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.030
Tungsten (W), % 0
2.5 to 3.5