MakeItFrom.com
Menu (ESC)

EN 1.6368 Steel vs. ASTM A387 Grade 12 Steel

Both EN 1.6368 steel and ASTM A387 grade 12 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.6368 steel and the bottom bar is ASTM A387 grade 12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
140 to 160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18
25
Fatigue Strength, MPa 310 to 330
190 to 230
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 410 to 430
300 to 330
Tensile Strength: Ultimate (UTS), MPa 660 to 690
470 to 520
Tensile Strength: Yield (Proof), MPa 460 to 490
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
430
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
44
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
2.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
1.6
Embodied Energy, MJ/kg 22
21
Embodied Water, L/kg 53
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
98 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 580 to 650
180 to 250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23 to 24
16 to 18
Strength to Weight: Bending, points 21 to 22
17 to 18
Thermal Diffusivity, mm2/s 11
12
Thermal Shock Resistance, points 20
14 to 15

Alloy Composition

Aluminum (Al), % 0.015 to 0.040
0
Carbon (C), % 0 to 0.17
0.050 to 0.17
Chromium (Cr), % 0 to 0.3
0.8 to 1.2
Copper (Cu), % 0.5 to 0.8
0
Iron (Fe), % 95.1 to 97.2
97 to 98.2
Manganese (Mn), % 0.8 to 1.2
0.4 to 0.65
Molybdenum (Mo), % 0.25 to 0.5
0.45 to 0.6
Nickel (Ni), % 1.0 to 1.3
0
Niobium (Nb), % 0.015 to 0.045
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0.25 to 0.5
0.15 to 0.4
Sulfur (S), % 0 to 0.010
0 to 0.025

Comparable Variants