MakeItFrom.com
Menu (ESC)

EN 1.6368 Steel vs. EN 1.4424 Stainless Steel

Both EN 1.6368 steel and EN 1.4424 stainless steel are iron alloys. They have 74% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.6368 steel and the bottom bar is EN 1.4424 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
230
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18
28
Fatigue Strength, MPa 310 to 330
350 to 370
Impact Strength: V-Notched Charpy, J 43 to 46
90 to 91
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Shear Strength, MPa 410 to 430
520
Tensile Strength: Ultimate (UTS), MPa 660 to 690
800
Tensile Strength: Yield (Proof), MPa 460 to 490
480 to 500

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 410
960
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
13
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
15
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.7
3.4
Embodied Energy, MJ/kg 22
46
Embodied Water, L/kg 53
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 580 to 650
580 to 640
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23 to 24
29
Strength to Weight: Bending, points 21 to 22
25
Thermal Diffusivity, mm2/s 11
3.5
Thermal Shock Resistance, points 20
23

Alloy Composition

Aluminum (Al), % 0.015 to 0.040
0
Carbon (C), % 0 to 0.17
0 to 0.030
Chromium (Cr), % 0 to 0.3
18 to 19
Copper (Cu), % 0.5 to 0.8
0
Iron (Fe), % 95.1 to 97.2
68.6 to 72.4
Manganese (Mn), % 0.8 to 1.2
1.2 to 2.0
Molybdenum (Mo), % 0.25 to 0.5
2.5 to 3.0
Nickel (Ni), % 1.0 to 1.3
4.5 to 5.2
Niobium (Nb), % 0.015 to 0.045
0
Nitrogen (N), % 0 to 0.020
0.050 to 0.1
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0.25 to 0.5
1.4 to 2.0
Sulfur (S), % 0 to 0.010
0 to 0.015