MakeItFrom.com
Menu (ESC)

EN 1.6368 Steel vs. EN 1.4435 Stainless Steel

Both EN 1.6368 steel and EN 1.4435 stainless steel are iron alloys. They have 67% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.6368 steel and the bottom bar is EN 1.4435 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18
43
Fatigue Strength, MPa 310 to 330
220
Impact Strength: V-Notched Charpy, J 43 to 46
90
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Shear Strength, MPa 410 to 430
420
Tensile Strength: Ultimate (UTS), MPa 660 to 690
610
Tensile Strength: Yield (Proof), MPa 460 to 490
240

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 410
980
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
21
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.7
4.1
Embodied Energy, MJ/kg 22
57
Embodied Water, L/kg 53
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
210
Resilience: Unit (Modulus of Resilience), kJ/m3 580 to 650
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23 to 24
21
Strength to Weight: Bending, points 21 to 22
20
Thermal Diffusivity, mm2/s 11
4.0
Thermal Shock Resistance, points 20
14

Alloy Composition

Aluminum (Al), % 0.015 to 0.040
0
Carbon (C), % 0 to 0.17
0 to 0.030
Chromium (Cr), % 0 to 0.3
17 to 19
Copper (Cu), % 0.5 to 0.8
0
Iron (Fe), % 95.1 to 97.2
59.8 to 68
Manganese (Mn), % 0.8 to 1.2
0 to 2.0
Molybdenum (Mo), % 0.25 to 0.5
2.5 to 3.0
Nickel (Ni), % 1.0 to 1.3
12.5 to 15
Niobium (Nb), % 0.015 to 0.045
0
Nitrogen (N), % 0 to 0.020
0 to 0.1
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0.25 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015