MakeItFrom.com
Menu (ESC)

EN 1.6368 Steel vs. CC761S Brass

EN 1.6368 steel belongs to the iron alloys classification, while CC761S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.6368 steel and the bottom bar is CC761S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
150
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
8.7
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 660 to 690
540
Tensile Strength: Yield (Proof), MPa 460 to 490
340

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1460
960
Melting Onset (Solidus), °C 1420
910
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 40
27
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
40
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
43

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
27
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 1.7
2.7
Embodied Energy, MJ/kg 22
45
Embodied Water, L/kg 53
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
41
Resilience: Unit (Modulus of Resilience), kJ/m3 580 to 650
530
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 23 to 24
18
Strength to Weight: Bending, points 21 to 22
18
Thermal Diffusivity, mm2/s 11
8.0
Thermal Shock Resistance, points 20
19

Alloy Composition

Aluminum (Al), % 0.015 to 0.040
0 to 0.1
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0 to 0.17
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0.5 to 0.8
78 to 83
Iron (Fe), % 95.1 to 97.2
0 to 0.6
Lead (Pb), % 0
0 to 0.8
Manganese (Mn), % 0.8 to 1.2
0 to 0.2
Molybdenum (Mo), % 0.25 to 0.5
0
Nickel (Ni), % 1.0 to 1.3
0 to 1.0
Niobium (Nb), % 0.015 to 0.045
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0.25 to 0.5
3.0 to 5.0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
8.9 to 19