MakeItFrom.com
Menu (ESC)

EN 1.6368 Steel vs. SAE-AISI 1080 Steel

Both EN 1.6368 steel and SAE-AISI 1080 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.6368 steel and the bottom bar is SAE-AISI 1080 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
220 to 260
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18
11
Fatigue Strength, MPa 310 to 330
300 to 360
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Shear Strength, MPa 410 to 430
460 to 520
Tensile Strength: Ultimate (UTS), MPa 660 to 690
770 to 870
Tensile Strength: Yield (Proof), MPa 460 to 490
480 to 590

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
400
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
51
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
9.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
11

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
1.4
Embodied Energy, MJ/kg 22
19
Embodied Water, L/kg 53
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
80 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 580 to 650
610 to 920
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23 to 24
27 to 31
Strength to Weight: Bending, points 21 to 22
24 to 26
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 20
25 to 29

Alloy Composition

Aluminum (Al), % 0.015 to 0.040
0
Carbon (C), % 0 to 0.17
0.75 to 0.88
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0.5 to 0.8
0
Iron (Fe), % 95.1 to 97.2
98.1 to 98.7
Manganese (Mn), % 0.8 to 1.2
0.6 to 0.9
Molybdenum (Mo), % 0.25 to 0.5
0
Nickel (Ni), % 1.0 to 1.3
0
Niobium (Nb), % 0.015 to 0.045
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.25 to 0.5
0
Sulfur (S), % 0 to 0.010
0 to 0.050