MakeItFrom.com
Menu (ESC)

EN 1.6368 Steel vs. C91000 Bronze

EN 1.6368 steel belongs to the iron alloys classification, while C91000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.6368 steel and the bottom bar is C91000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
180
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
7.0
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
39
Tensile Strength: Ultimate (UTS), MPa 660 to 690
230
Tensile Strength: Yield (Proof), MPa 460 to 490
150

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 410
160
Melting Completion (Liquidus), °C 1460
960
Melting Onset (Solidus), °C 1420
820
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 40
64
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
37
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 1.7
4.1
Embodied Energy, MJ/kg 22
67
Embodied Water, L/kg 53
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
14
Resilience: Unit (Modulus of Resilience), kJ/m3 580 to 650
100
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23 to 24
7.5
Strength to Weight: Bending, points 21 to 22
9.7
Thermal Diffusivity, mm2/s 11
20
Thermal Shock Resistance, points 20
8.8

Alloy Composition

Aluminum (Al), % 0.015 to 0.040
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.17
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0.5 to 0.8
84 to 86
Iron (Fe), % 95.1 to 97.2
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.8 to 1.2
0
Molybdenum (Mo), % 0.25 to 0.5
0
Nickel (Ni), % 1.0 to 1.3
0 to 0.8
Niobium (Nb), % 0.015 to 0.045
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0 to 1.5
Silicon (Si), % 0.25 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.010
0 to 0.050
Tin (Sn), % 0
14 to 16
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.6