MakeItFrom.com
Menu (ESC)

EN 1.6368 Steel vs. N08020 Stainless Steel

Both EN 1.6368 steel and N08020 stainless steel are iron alloys. They have 41% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.6368 steel and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18
15 to 34
Fatigue Strength, MPa 310 to 330
210 to 240
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 410 to 430
380 to 410
Tensile Strength: Ultimate (UTS), MPa 660 to 690
610 to 620
Tensile Strength: Yield (Proof), MPa 460 to 490
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 410
1100
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 40
12
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
38
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 1.7
6.6
Embodied Energy, MJ/kg 22
92
Embodied Water, L/kg 53
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 580 to 650
180 to 440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23 to 24
21
Strength to Weight: Bending, points 21 to 22
20
Thermal Diffusivity, mm2/s 11
3.2
Thermal Shock Resistance, points 20
15

Alloy Composition

Aluminum (Al), % 0.015 to 0.040
0
Carbon (C), % 0 to 0.17
0 to 0.070
Chromium (Cr), % 0 to 0.3
19 to 21
Copper (Cu), % 0.5 to 0.8
3.0 to 4.0
Iron (Fe), % 95.1 to 97.2
29.9 to 44
Manganese (Mn), % 0.8 to 1.2
0 to 2.0
Molybdenum (Mo), % 0.25 to 0.5
2.0 to 3.0
Nickel (Ni), % 1.0 to 1.3
32 to 38
Niobium (Nb), % 0.015 to 0.045
0 to 1.0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0.25 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.035