MakeItFrom.com
Menu (ESC)

EN 1.6526 Steel vs. C90200 Bronze

EN 1.6526 steel belongs to the iron alloys classification, while C90200 bronze belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.6526 steel and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 190
70
Elastic (Young's, Tensile) Modulus, GPa 190
110
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 520 to 1460
260

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 410
180
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
880
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 39
62
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
13
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
13

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
34
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 1.5
3.3
Embodied Energy, MJ/kg 20
53
Embodied Water, L/kg 50
370

Common Calculations

Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 18 to 52
8.3
Strength to Weight: Bending, points 18 to 36
10
Thermal Diffusivity, mm2/s 10
19
Thermal Shock Resistance, points 15 to 43
9.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.17 to 0.23
0
Chromium (Cr), % 0.35 to 0.7
0
Copper (Cu), % 0 to 0.25
91 to 94
Iron (Fe), % 96.6 to 98.3
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.65 to 1.0
0
Molybdenum (Mo), % 0.15 to 0.25
0
Nickel (Ni), % 0.4 to 0.7
0 to 0.5
Phosphorus (P), % 0 to 0.025
0 to 0.050
Silicon (Si), % 0 to 0.3
0 to 0.0050
Sulfur (S), % 0.020 to 0.040
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6