MakeItFrom.com
Menu (ESC)

EN 1.6553 Steel vs. 5110A Aluminum

EN 1.6553 steel belongs to the iron alloys classification, while 5110A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.6553 steel and the bottom bar is 5110A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 19 to 21
4.5 to 28
Fatigue Strength, MPa 330 to 460
37 to 77
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Tensile Strength: Ultimate (UTS), MPa 710 to 800
100 to 190
Tensile Strength: Yield (Proof), MPa 470 to 670
32 to 170

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 420
180
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 39
220
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
57
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
190

Otherwise Unclassified Properties

Base Metal Price, % relative 2.7
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.6
8.3
Embodied Energy, MJ/kg 21
150
Embodied Water, L/kg 51
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 150
6.8 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1190
7.6 to 200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 25 to 28
10 to 19
Strength to Weight: Bending, points 23 to 24
18 to 27
Thermal Diffusivity, mm2/s 10
91
Thermal Shock Resistance, points 21 to 23
4.5 to 8.4

Alloy Composition

Aluminum (Al), % 0
98.5 to 99.8
Carbon (C), % 0.23 to 0.28
0
Chromium (Cr), % 0.4 to 0.8
0
Copper (Cu), % 0 to 0.3
0 to 0.2
Iron (Fe), % 95.6 to 98.2
0 to 0.25
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0.6 to 1.0
0 to 0.2
Molybdenum (Mo), % 0.15 to 0.3
0
Nickel (Ni), % 0.4 to 0.8
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.8
0 to 0.15
Sulfur (S), % 0 to 0.025
0
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.030
Residuals, % 0
0 to 0.1

Comparable Variants