EN 1.6553 Steel vs. EN 1.6579 Steel
Both EN 1.6553 steel and EN 1.6579 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.
For each property being compared, the top bar is EN 1.6553 steel and the bottom bar is EN 1.6579 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 210 to 240 | |
260 to 290 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 19 to 21 | |
11 to 14 |
Fatigue Strength, MPa | 330 to 460 | |
380 to 570 |
Impact Strength: V-Notched Charpy, J | 30 | |
35 to 41 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
73 |
Tensile Strength: Ultimate (UTS), MPa | 710 to 800 | |
850 to 980 |
Tensile Strength: Yield (Proof), MPa | 470 to 670 | |
600 to 910 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Maximum Temperature: Mechanical, °C | 420 | |
440 |
Melting Completion (Liquidus), °C | 1460 | |
1460 |
Melting Onset (Solidus), °C | 1420 | |
1410 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 39 | |
39 |
Thermal Expansion, µm/m-K | 13 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.5 | |
7.7 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.6 | |
8.8 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.7 | |
3.7 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.6 | |
1.7 |
Embodied Energy, MJ/kg | 21 | |
22 |
Embodied Water, L/kg | 51 | |
56 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 130 to 150 | |
100 to 120 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 600 to 1190 | |
950 to 2210 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 25 to 28 | |
30 to 35 |
Strength to Weight: Bending, points | 23 to 24 | |
25 to 28 |
Thermal Diffusivity, mm2/s | 10 | |
11 |
Thermal Shock Resistance, points | 21 to 23 | |
25 to 29 |
Alloy Composition
Carbon (C), % | 0.23 to 0.28 | |
0.32 to 0.38 |
Chromium (Cr), % | 0.4 to 0.8 | |
1.4 to 1.7 |
Copper (Cu), % | 0 to 0.3 | |
0 |
Iron (Fe), % | 95.6 to 98.2 | |
94.2 to 96.1 |
Manganese (Mn), % | 0.6 to 1.0 | |
0.6 to 1.0 |
Molybdenum (Mo), % | 0.15 to 0.3 | |
0.15 to 0.35 |
Nickel (Ni), % | 0.4 to 0.8 | |
1.4 to 1.7 |
Phosphorus (P), % | 0 to 0.030 | |
0 to 0.025 |
Silicon (Si), % | 0 to 0.8 | |
0 to 0.6 |
Sulfur (S), % | 0 to 0.025 | |
0 to 0.030 |
Vanadium (V), % | 0 to 0.030 | |
0 |