MakeItFrom.com
Menu (ESC)

EN 1.6553 Steel vs. C87900 Brass

EN 1.6553 steel belongs to the iron alloys classification, while C87900 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.6553 steel and the bottom bar is C87900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 19 to 21
25
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 710 to 800
480
Tensile Strength: Yield (Proof), MPa 470 to 670
240

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 420
130
Melting Completion (Liquidus), °C 1460
930
Melting Onset (Solidus), °C 1420
900
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
120
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
15
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
17

Otherwise Unclassified Properties

Base Metal Price, % relative 2.7
24
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.6
2.7
Embodied Energy, MJ/kg 21
46
Embodied Water, L/kg 51
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 150
100
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1190
270
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 25 to 28
17
Strength to Weight: Bending, points 23 to 24
17
Thermal Diffusivity, mm2/s 10
37
Thermal Shock Resistance, points 21 to 23
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0.23 to 0.28
0
Chromium (Cr), % 0.4 to 0.8
0
Copper (Cu), % 0 to 0.3
63 to 69.2
Iron (Fe), % 95.6 to 98.2
0 to 0.4
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0.6 to 1.0
0 to 0.15
Molybdenum (Mo), % 0.15 to 0.3
0
Nickel (Ni), % 0.4 to 0.8
0 to 0.5
Phosphorus (P), % 0 to 0.030
0 to 0.010
Silicon (Si), % 0 to 0.8
0.8 to 1.2
Sulfur (S), % 0 to 0.025
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
30 to 36