MakeItFrom.com
Menu (ESC)

EN 1.6553 Steel vs. S17600 Stainless Steel

Both EN 1.6553 steel and S17600 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.6553 steel and the bottom bar is S17600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 240
270 to 410
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19 to 21
8.6 to 11
Fatigue Strength, MPa 330 to 460
300 to 680
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 710 to 800
940 to 1490
Tensile Strength: Yield (Proof), MPa 470 to 670
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 420
890
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
15
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.7
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
2.9
Embodied Energy, MJ/kg 21
42
Embodied Water, L/kg 51
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 150
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1190
850 to 4390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25 to 28
34 to 54
Strength to Weight: Bending, points 23 to 24
28 to 37
Thermal Diffusivity, mm2/s 10
4.1
Thermal Shock Resistance, points 21 to 23
31 to 50

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0.23 to 0.28
0 to 0.080
Chromium (Cr), % 0.4 to 0.8
16 to 17.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 95.6 to 98.2
71.3 to 77.6
Manganese (Mn), % 0.6 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.15 to 0.3
0
Nickel (Ni), % 0.4 to 0.8
6.0 to 7.5
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0
0.4 to 1.2
Vanadium (V), % 0 to 0.030
0

Comparable Variants