MakeItFrom.com
Menu (ESC)

EN 1.6553 Steel vs. S40975 Stainless Steel

Both EN 1.6553 steel and S40975 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.6553 steel and the bottom bar is S40975 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 240
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19 to 21
22
Fatigue Strength, MPa 330 to 460
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Tensile Strength: Ultimate (UTS), MPa 710 to 800
460
Tensile Strength: Yield (Proof), MPa 470 to 670
310

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 420
710
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
26
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.7
6.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
2.0
Embodied Energy, MJ/kg 21
28
Embodied Water, L/kg 51
95

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 150
93
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1190
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25 to 28
17
Strength to Weight: Bending, points 23 to 24
17
Thermal Diffusivity, mm2/s 10
7.0
Thermal Shock Resistance, points 21 to 23
17

Alloy Composition

Carbon (C), % 0.23 to 0.28
0 to 0.030
Chromium (Cr), % 0.4 to 0.8
10.5 to 11.7
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 95.6 to 98.2
84.4 to 89
Manganese (Mn), % 0.6 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.15 to 0.3
0
Nickel (Ni), % 0.4 to 0.8
0.5 to 1.0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0
0 to 0.75
Vanadium (V), % 0 to 0.030
0