MakeItFrom.com
Menu (ESC)

EN 1.6554 Steel vs. ACI-ASTM CB6 Steel

Both EN 1.6554 steel and ACI-ASTM CB6 steel are iron alloys. They have 81% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.6554 steel and the bottom bar is ACI-ASTM CB6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17 to 21
18
Fatigue Strength, MPa 380 to 520
410
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 780 to 930
880
Tensile Strength: Yield (Proof), MPa 550 to 790
660

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 420
870
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
17
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
12
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
2.5
Embodied Energy, MJ/kg 22
36
Embodied Water, L/kg 53
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
150
Resilience: Unit (Modulus of Resilience), kJ/m3 810 to 1650
1110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 27 to 33
32
Strength to Weight: Bending, points 24 to 27
26
Thermal Diffusivity, mm2/s 11
4.6
Thermal Shock Resistance, points 23 to 27
31

Alloy Composition

Carbon (C), % 0.23 to 0.28
0 to 0.060
Chromium (Cr), % 0.7 to 0.9
15.5 to 17.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 94.6 to 97.3
74.4 to 81
Manganese (Mn), % 0.6 to 0.9
0 to 1.0
Molybdenum (Mo), % 0.2 to 0.3
0 to 0.5
Nickel (Ni), % 1.0 to 2.0
3.5 to 5.5
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Vanadium (V), % 0 to 0.030
0