MakeItFrom.com
Menu (ESC)

EN 1.6554 Steel vs. EN 1.8888 Steel

Both EN 1.6554 steel and EN 1.8888 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.6554 steel and the bottom bar is EN 1.8888 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230 to 280
250
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17 to 21
16
Fatigue Strength, MPa 380 to 520
470
Impact Strength: V-Notched Charpy, J 30 to 45
110
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 780 to 930
830
Tensile Strength: Yield (Proof), MPa 550 to 790
720

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 420
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
3.7
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
1.9
Embodied Energy, MJ/kg 22
26
Embodied Water, L/kg 53
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
130
Resilience: Unit (Modulus of Resilience), kJ/m3 810 to 1650
1370
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 27 to 33
29
Strength to Weight: Bending, points 24 to 27
25
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 23 to 27
24

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.23 to 0.28
0 to 0.2
Chromium (Cr), % 0.7 to 0.9
0 to 1.5
Copper (Cu), % 0 to 0.3
0 to 0.3
Iron (Fe), % 94.6 to 97.3
91.9 to 100
Manganese (Mn), % 0.6 to 0.9
0 to 1.7
Molybdenum (Mo), % 0.2 to 0.3
0 to 0.7
Nickel (Ni), % 1.0 to 2.0
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0 to 0.6
0 to 0.8
Sulfur (S), % 0 to 0.025
0 to 0.0050
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0 to 0.030
0 to 0.12
Zirconium (Zr), % 0
0 to 0.15