MakeItFrom.com
Menu (ESC)

EN 1.6554 Steel vs. CC380H Copper-nickel

EN 1.6554 steel belongs to the iron alloys classification, while CC380H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.6554 steel and the bottom bar is CC380H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230 to 280
80
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17 to 21
26
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
47
Tensile Strength: Ultimate (UTS), MPa 780 to 930
310
Tensile Strength: Yield (Proof), MPa 550 to 790
120

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 420
220
Melting Completion (Liquidus), °C 1460
1130
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 40
46
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
11

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
36
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.7
3.8
Embodied Energy, MJ/kg 22
58
Embodied Water, L/kg 53
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
65
Resilience: Unit (Modulus of Resilience), kJ/m3 810 to 1650
59
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 27 to 33
9.8
Strength to Weight: Bending, points 24 to 27
12
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 23 to 27
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0.23 to 0.28
0
Chromium (Cr), % 0.7 to 0.9
0
Copper (Cu), % 0 to 0.3
84.5 to 89
Iron (Fe), % 94.6 to 97.3
1.0 to 1.8
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.6 to 0.9
1.0 to 1.5
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.0 to 2.0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.5