MakeItFrom.com
Menu (ESC)

EN 1.6554 Steel vs. C19800 Copper

EN 1.6554 steel belongs to the iron alloys classification, while C19800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.6554 steel and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 21
9.0 to 12
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 780 to 930
430 to 550
Tensile Strength: Yield (Proof), MPa 550 to 790
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 420
200
Melting Completion (Liquidus), °C 1460
1070
Melting Onset (Solidus), °C 1420
1050
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 40
260
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
61
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
62

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
30
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.7
2.8
Embodied Energy, MJ/kg 22
43
Embodied Water, L/kg 53
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 810 to 1650
770 to 1320
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 27 to 33
14 to 17
Strength to Weight: Bending, points 24 to 27
14 to 17
Thermal Diffusivity, mm2/s 11
75
Thermal Shock Resistance, points 23 to 27
15 to 20

Alloy Composition

Carbon (C), % 0.23 to 0.28
0
Chromium (Cr), % 0.7 to 0.9
0
Copper (Cu), % 0 to 0.3
95.7 to 99.47
Iron (Fe), % 94.6 to 97.3
0.020 to 0.5
Magnesium (Mg), % 0
0.1 to 1.0
Manganese (Mn), % 0.6 to 0.9
0
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.0 to 2.0
0
Phosphorus (P), % 0 to 0.030
0.010 to 0.1
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0.1 to 1.0
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0.3 to 1.5
Residuals, % 0
0 to 0.2

Comparable Variants