MakeItFrom.com
Menu (ESC)

EN 1.6554 Steel vs. C81400 Copper

EN 1.6554 steel belongs to the iron alloys classification, while C81400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.6554 steel and the bottom bar is C81400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17 to 21
11
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 780 to 930
370
Tensile Strength: Yield (Proof), MPa 550 to 790
250

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 420
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 40
260
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
60
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
61

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
33
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.7
2.8
Embodied Energy, MJ/kg 22
45
Embodied Water, L/kg 53
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
36
Resilience: Unit (Modulus of Resilience), kJ/m3 810 to 1650
260
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 27 to 33
11
Strength to Weight: Bending, points 24 to 27
13
Thermal Diffusivity, mm2/s 11
75
Thermal Shock Resistance, points 23 to 27
13

Alloy Composition

Beryllium (Be), % 0
0.020 to 0.1
Carbon (C), % 0.23 to 0.28
0
Chromium (Cr), % 0.7 to 0.9
0.6 to 1.0
Copper (Cu), % 0 to 0.3
98.4 to 99.38
Iron (Fe), % 94.6 to 97.3
0
Manganese (Mn), % 0.6 to 0.9
0
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.0 to 2.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.025
0
Vanadium (V), % 0 to 0.030
0
Residuals, % 0
0 to 0.5