EN 1.6554 Steel vs. S17600 Stainless Steel
Both EN 1.6554 steel and S17600 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.
For each property being compared, the top bar is EN 1.6554 steel and the bottom bar is S17600 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 230 to 280 | |
270 to 410 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
200 |
Elongation at Break, % | 17 to 21 | |
8.6 to 11 |
Fatigue Strength, MPa | 380 to 520 | |
300 to 680 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 73 | |
76 |
Tensile Strength: Ultimate (UTS), MPa | 780 to 930 | |
940 to 1490 |
Tensile Strength: Yield (Proof), MPa | 550 to 790 | |
580 to 1310 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
290 |
Maximum Temperature: Mechanical, °C | 420 | |
890 |
Melting Completion (Liquidus), °C | 1460 | |
1430 |
Melting Onset (Solidus), °C | 1420 | |
1390 |
Specific Heat Capacity, J/kg-K | 470 | |
480 |
Thermal Conductivity, W/m-K | 40 | |
15 |
Thermal Expansion, µm/m-K | 13 | |
11 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.6 | |
2.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.7 | |
2.7 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 3.4 | |
13 |
Density, g/cm3 | 7.9 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.7 | |
2.9 |
Embodied Energy, MJ/kg | 22 | |
42 |
Embodied Water, L/kg | 53 | |
130 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 140 to 150 | |
70 to 150 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 810 to 1650 | |
850 to 4390 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 27 to 33 | |
34 to 54 |
Strength to Weight: Bending, points | 24 to 27 | |
28 to 37 |
Thermal Diffusivity, mm2/s | 11 | |
4.1 |
Thermal Shock Resistance, points | 23 to 27 | |
31 to 50 |
Alloy Composition
Aluminum (Al), % | 0 | |
0 to 0.4 |
Carbon (C), % | 0.23 to 0.28 | |
0 to 0.080 |
Chromium (Cr), % | 0.7 to 0.9 | |
16 to 17.5 |
Copper (Cu), % | 0 to 0.3 | |
0 |
Iron (Fe), % | 94.6 to 97.3 | |
71.3 to 77.6 |
Manganese (Mn), % | 0.6 to 0.9 | |
0 to 1.0 |
Molybdenum (Mo), % | 0.2 to 0.3 | |
0 |
Nickel (Ni), % | 1.0 to 2.0 | |
6.0 to 7.5 |
Phosphorus (P), % | 0 to 0.030 | |
0 to 0.040 |
Silicon (Si), % | 0 to 0.6 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.025 | |
0 to 0.030 |
Titanium (Ti), % | 0 | |
0.4 to 1.2 |
Vanadium (V), % | 0 to 0.030 | |
0 |