MakeItFrom.com
Menu (ESC)

EN 1.6554 Steel vs. S44735 Stainless Steel

Both EN 1.6554 steel and S44735 stainless steel are iron alloys. They have 67% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.6554 steel and the bottom bar is S44735 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230 to 280
220
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 17 to 21
21
Fatigue Strength, MPa 380 to 520
300
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
82
Tensile Strength: Ultimate (UTS), MPa 780 to 930
630
Tensile Strength: Yield (Proof), MPa 550 to 790
460

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 420
1100
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
480
Thermal Expansion, µm/m-K 13
11

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
21
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.7
4.4
Embodied Energy, MJ/kg 22
61
Embodied Water, L/kg 53
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
120
Resilience: Unit (Modulus of Resilience), kJ/m3 810 to 1650
520
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
26
Strength to Weight: Axial, points 27 to 33
23
Strength to Weight: Bending, points 24 to 27
21
Thermal Shock Resistance, points 23 to 27
20

Alloy Composition

Carbon (C), % 0.23 to 0.28
0 to 0.030
Chromium (Cr), % 0.7 to 0.9
28 to 30
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 94.6 to 97.3
60.7 to 68.4
Manganese (Mn), % 0.6 to 0.9
0 to 1.0
Molybdenum (Mo), % 0.2 to 0.3
3.6 to 4.2
Nickel (Ni), % 1.0 to 2.0
0 to 1.0
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0
Vanadium (V), % 0 to 0.030
0