MakeItFrom.com
Menu (ESC)

EN 1.6570 Steel vs. ASTM A182 Grade F92

Both EN 1.6570 steel and ASTM A182 grade F92 are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.6570 steel and the bottom bar is ASTM A182 grade F92.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270 to 340
240
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 17
22
Fatigue Strength, MPa 500 to 660
360
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 910 to 1130
690
Tensile Strength: Yield (Proof), MPa 760 to 1060
500

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 440
590
Melting Completion (Liquidus), °C 1460
1490
Melting Onset (Solidus), °C 1420
1450
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
26
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
10

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
11
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.7
2.8
Embodied Energy, MJ/kg 23
40
Embodied Water, L/kg 56
89

Common Calculations

PREN (Pitting Resistance) 2.5
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 140
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1520 to 3010
650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 32 to 40
24
Strength to Weight: Bending, points 27 to 31
22
Thermal Diffusivity, mm2/s 11
6.9
Thermal Shock Resistance, points 27 to 33
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0.28 to 0.35
0.070 to 0.13
Chromium (Cr), % 1.0 to 1.4
8.5 to 9.5
Iron (Fe), % 94 to 96.2
85.8 to 89.1
Manganese (Mn), % 0.6 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0.3 to 0.5
0.3 to 0.6
Nickel (Ni), % 1.6 to 2.1
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010