MakeItFrom.com
Menu (ESC)

EN 1.6571 Steel vs. A413.0 Aluminum

EN 1.6571 steel belongs to the iron alloys classification, while A413.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.6571 steel and the bottom bar is A413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 190
80
Elastic (Young's, Tensile) Modulus, GPa 190
73
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 520 to 1460
240

Thermal Properties

Latent Heat of Fusion, J/g 250
570
Maximum Temperature: Mechanical, °C 420
170
Melting Completion (Liquidus), °C 1460
590
Melting Onset (Solidus), °C 1420
580
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
120
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
31
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 1.7
7.6
Embodied Energy, MJ/kg 22
140
Embodied Water, L/kg 53
1040

Common Calculations

Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 19 to 51
25
Strength to Weight: Bending, points 18 to 36
33
Thermal Diffusivity, mm2/s 11
52
Thermal Shock Resistance, points 15 to 43
11

Alloy Composition

Aluminum (Al), % 0
82.9 to 89
Carbon (C), % 0.16 to 0.23
0
Chromium (Cr), % 0.6 to 0.9
0
Copper (Cu), % 0 to 0.25
0 to 1.0
Iron (Fe), % 95.3 to 97.1
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0.5 to 0.9
0 to 0.35
Molybdenum (Mo), % 0.25 to 0.35
0
Nickel (Ni), % 1.4 to 1.7
0 to 0.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
11 to 13
Sulfur (S), % 0.020 to 0.040
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25