MakeItFrom.com
Menu (ESC)

EN 1.6579 Steel vs. 4145 Aluminum

EN 1.6579 steel belongs to the iron alloys classification, while 4145 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.6579 steel and the bottom bar is 4145 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 11 to 14
2.2
Fatigue Strength, MPa 380 to 570
48
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
28
Tensile Strength: Ultimate (UTS), MPa 850 to 980
120
Tensile Strength: Yield (Proof), MPa 600 to 910
68

Thermal Properties

Latent Heat of Fusion, J/g 250
540
Maximum Temperature: Mechanical, °C 440
160
Melting Completion (Liquidus), °C 1460
590
Melting Onset (Solidus), °C 1410
520
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 39
100
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
26
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
84

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
10
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 1.7
7.6
Embodied Energy, MJ/kg 22
140
Embodied Water, L/kg 56
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 120
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 950 to 2210
31
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 30 to 35
12
Strength to Weight: Bending, points 25 to 28
19
Thermal Diffusivity, mm2/s 11
42
Thermal Shock Resistance, points 25 to 29
5.5

Alloy Composition

Aluminum (Al), % 0
83 to 87.4
Carbon (C), % 0.32 to 0.38
0
Chromium (Cr), % 1.4 to 1.7
0 to 0.15
Copper (Cu), % 0
3.3 to 4.7
Iron (Fe), % 94.2 to 96.1
0 to 0.8
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0.6 to 1.0
0 to 0.15
Molybdenum (Mo), % 0.15 to 0.35
0
Nickel (Ni), % 1.4 to 1.7
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.6
9.3 to 10.7
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15