EN 1.6579 Steel vs. ASTM A372 Grade J Steel
Both EN 1.6579 steel and ASTM A372 grade J steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is EN 1.6579 steel and the bottom bar is ASTM A372 grade J steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 260 to 290 | |
200 to 310 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 11 to 14 | |
17 to 22 |
Fatigue Strength, MPa | 380 to 570 | |
310 to 570 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
73 |
Tensile Strength: Ultimate (UTS), MPa | 850 to 980 | |
650 to 1020 |
Tensile Strength: Yield (Proof), MPa | 600 to 910 | |
430 to 850 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Maximum Temperature: Mechanical, °C | 440 | |
420 |
Melting Completion (Liquidus), °C | 1460 | |
1460 |
Melting Onset (Solidus), °C | 1410 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 39 | |
44 |
Thermal Expansion, µm/m-K | 13 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.7 | |
7.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.8 | |
8.4 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 3.7 | |
2.4 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.7 | |
1.5 |
Embodied Energy, MJ/kg | 22 | |
20 |
Embodied Water, L/kg | 56 | |
51 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 100 to 120 | |
130 to 170 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 950 to 2210 | |
500 to 1930 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 30 to 35 | |
23 to 36 |
Strength to Weight: Bending, points | 25 to 28 | |
21 to 29 |
Thermal Diffusivity, mm2/s | 11 | |
12 |
Thermal Shock Resistance, points | 25 to 29 | |
19 to 30 |
Alloy Composition
Carbon (C), % | 0.32 to 0.38 | |
0.35 to 0.5 |
Chromium (Cr), % | 1.4 to 1.7 | |
0.8 to 1.2 |
Iron (Fe), % | 94.2 to 96.1 | |
96.7 to 97.8 |
Manganese (Mn), % | 0.6 to 1.0 | |
0.75 to 1.1 |
Molybdenum (Mo), % | 0.15 to 0.35 | |
0.15 to 0.25 |
Nickel (Ni), % | 1.4 to 1.7 | |
0 |
Phosphorus (P), % | 0 to 0.025 | |
0 to 0.015 |
Silicon (Si), % | 0 to 0.6 | |
0.15 to 0.35 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.010 |