MakeItFrom.com
Menu (ESC)

EN 1.6579 Steel vs. Grade 33 Titanium

EN 1.6579 steel belongs to the iron alloys classification, while grade 33 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.6579 steel and the bottom bar is grade 33 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 14
23
Fatigue Strength, MPa 380 to 570
250
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 850 to 980
390
Tensile Strength: Yield (Proof), MPa 600 to 910
350

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 440
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1410
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 39
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
55
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.7
33
Embodied Energy, MJ/kg 22
530
Embodied Water, L/kg 56
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 120
86
Resilience: Unit (Modulus of Resilience), kJ/m3 950 to 2210
590
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 30 to 35
24
Strength to Weight: Bending, points 25 to 28
26
Thermal Diffusivity, mm2/s 11
8.7
Thermal Shock Resistance, points 25 to 29
30

Alloy Composition

Carbon (C), % 0.32 to 0.38
0 to 0.080
Chromium (Cr), % 1.4 to 1.7
0.1 to 0.2
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 94.2 to 96.1
0 to 0.3
Manganese (Mn), % 0.6 to 1.0
0
Molybdenum (Mo), % 0.15 to 0.35
0
Nickel (Ni), % 1.4 to 1.7
0.35 to 0.55
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.010 to 0.020
Phosphorus (P), % 0 to 0.025
0
Ruthenium (Ru), % 0
0.020 to 0.040
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.1 to 99.52
Residuals, % 0
0 to 0.4